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Corrections to coupled mode theory for deep gratings
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We generalize the standard coupled mode equations describing interactions between forward and backward
propagating waves in a nonlinear optical Bragg grating. Including the lowest order corrections of the grating
depth, we obtain a Hamiltonian system that can be regarded as an extension of the usual coupled mode
equations for shallow gratings. The results are consistent with existing results based on a Bloch wave expan-
sion. We also obtain exact traveling solitary wave solutions, that can be regarded as a generalized gap soliton,
modified by the grating’s depth.

PACS numbes): 42.79.Dj, 42.65.Tg, 42.81.Dp

[. INTRODUCTION in this geometry. To derive more general coupled mode
equations it is necessary that the field can be written approxi-

Wave propagation in nonlinear media with a periodicmately as a superposition tfo Bloch waves. Effects due to
structure is of great current interest in linear and nonlineapther Bloch waves can be treated perturbatiVielg]. The
physics. A striking aspect of the linear properties of suchBloch wave approach can also be used to describe nonlinear
media is the drastic change in the linear dispersion, higheffects in periodicy(? media[16,17. Note that the Bloch
lighted by the appearance of stop gaps. Coupled mode theofynction formalism has the feature that the linear system
is the standard method to describe electromagnetic waveeeds to be solved first, and the nonlinearity is then consid-
propagation in such structurg,2]. A most remarkable re- ered as a perturbation which can be treated in a variety of
sult obtained using this method is the existence of gap soliapproximations.
tons when the wave intensity is high enough for nonlinear A different formalism to treat deep gratings was reported
effects to play a rolg3]. This theoretical prediction was by Sipeet al. [18]. In this formalism, which was developed
verified experimentally in an optical fiber geomefd~6].  for linear gratings only, the properties of the linear system
More recently, in an AlGa _,As grating filter where the are determined within the method, and do not need to be
index modulationssn can be as great as 0.1, soliton propa-calculated separately beforehand. The linear properties are
gations was also observ§d]. The general gap soliton solu- therefore not obtained exactly, but in terms of an asymptotic
tions to the coupled mode equations were first obtained in &eries, only a few terms of which are retained. Nonetheless,
limiting case by Christodoulides and Josej#]. The full  the method leads naturally to low-order corrections to the
solutions were found by Aceves and Wabrji@4, who also  coupled mode equations for shallow gratings. The aim of the
discussed aspects of their stability. Comprehensive analysgsesent work to extend the analysis of Sigeal. [18] to
of Bragg solitons stability have also recently been reportednclude nonlinear effects, particularly the Kerr effect. We
[10,11). also analyze how gap solitons are affected by the grating

Though the coupled mode equation are the usual goverréiepth. The equations that are obtained are expected to have
ing equations for nonlinear gratings, their derivation from thethe forms
Maxwell equations often requires the assumption that the
grating is sufficientlyshallow This allows one to use the [ 1 d 4 ) ) — B
picture of coupling between forward and backward waves ! U_QE“LE E.+ (B |[*+2[E_[)E. +xE_+C=0,
satisfying the Bragg condition. However, if the periodic 1)
variation of the refractive index(z) is comparable to the 9 o
mean value, or, in other words, if the gratinglisep such as i(— —— —) E_+6(|E_|?+2|EL|)E_+k*E,+C=0.
in a Al,Ga, _,As grating filter, then the shallow grating ap-
proximation is not justified.

One method to analyze deep gratings is by using Bloch\s discussed in detail belovE.=E.(zt) are associated
wave solutions as the fundamental waves. Actually thewith envelopes of the forward{) and backward({) waves
modulation of asingle Bloch wave is known to obey the at theNth Bragg wave numbers, antivy are the group
nonlinear Schrdinger equatioi12—15 in Kerr optical me-  velocities in the absence of the grating. Parameteasd &
dia, and its fundamental soliton corresponds to gap solitonare constants, representing the gap width and the strength of

the nonlinearity, respectively. Without the terms indicated by
C, Egs. (1) reduce to the conventional coupled mode equa-
*Permanent address. tions for shallow gratings. Our main purpose here is to in-
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clude the effect of the grating depth up®g»?), where¢ is  infinite Fourier series, we may choose nonanalytic functions
less than 3 and parameterrepresents the grating’s depth. such as piecewise constant ones. In this sense, the grating’s
Therefore, we negled®(#°) quantities, though larger terms sharpnesss included in the analysis. We neglect the mate-
should be collected. Note that in the conventional coupledial dispersion which does not essentially change our results.

mode theory onlyO(#) are included. We expand the electric field as
In extracting the new terms, we must note three points.
The first is that the dielectric functioa(z) is given by an _ (2m+N) oi (2m+N)kz | o iNot
infinite Fourier seriegsee Eq.(3)]. Thus, in addition to the E= ,Z‘Z £ € € +e.c., ©)

forward and backward Bragg waves, we must consider an
infinite number of plane waves eifPm+N)kz](m=0,+1,  where £?™"N) are slowly changing envelopes ahdis a
=2 ...) [see Eq.(6)], wherek is the lowest order Bragg natural number. In particulag™ and&£(~N) are host waves
wave numberk=7/d, andd is the grating’s period. The which denote the amplitudes of the forward and backward
second point is thaf (“3V), associated with eg3iNkzl,  waves at théth Bragg wave numbeXk, respectively. Their
excited by the Bragg grating, affects the nonlinear termsamplitudes are assumed to be larger than the other enve-
though other excited waves do not contribute to the order wéopes. The fundamental frequenayis related to the Bragg
consider. The last point is that we should also consider thevave numbek by the dispersion relation in the absence of
periodicity of the Kerr coefficieny® [Eq. (4)]. In fact, the  the grating:
Fourier componentg..; and y-», lead to additional nonlin-
ear terms. (ck)?= eqw?. (7)

This paper is organized as follows. In Sec. Il we introduce
the perturbation expansion for the field. Neglecting nonlineaSince we consider thblth stop gap of the grating, the fre-
effects, we obtain a set of linear coupled mode equationgjuency ofE(z,t) is set toNw. We define a second dimen-
and we discuss how the dispersion relation and the photonigionless small parameterrepresenting the nonlinearity and
band gap are modified by the grating depth. In Sec. Il wethe gentleness of the modulation:
derive the nonlinear coupled mode equations, and we discuss

some properties of these equations. In Sec. 1V, analytic ex- O()~ yo~ gg=N _ gg=N )

pressions for traveling solitary wave solutions, representing a 0 iz ot

generalization of gap solitons, are derived. Section V gives

some concluding remarks and discussions. The relation betwees and » depends on the situation we
consider. Here we assurdé“") and constantk,c,w, ande,

Il. FUNDAMENTAL EQUATION AND LINEAR ANALYSIS to be normalized so as to be 0f(1).

_ _ o First we consider the linear cagé®(z)=0. Substitution
We consider electromagnetic wave propagation in a gratof Eq. (6) into the wave equatiof2), and a comparison of
ing in the z direction. We assume that the electric field is the coefficient of exp(2n+N)kzlexy —iNwt] give
polarized in thex direction. The wave equation for the elec-
tric field XE(z,t) is
(20 —(2n+N)?(ck)2E@ N L N2w2 Y €, £CMHN)
meZ
LPE P (33
¢ =Sle(E+ X (2FE7], ) 9E@n+N)
dzc  dt +2i(2n+ N)Csz+2in

which is derived directly from Maxwell's equations. Heze

. . K . X . ag(ZerN) 0725(2n+N)
is the speed of light in vacuum, and the dielectric functon % 2 ¢ 42
and the Kerr nonlinearity®)= x{3) , are periodic functions mez | ot Py
of z with periodd, expressed by the Fourier expansions
2 §2£(2m+N)
. 2 é-m——5 =0 €)
E(Z)ZE €|62'|kz, (3) me7Z at2
leZ
Forn#0,—N Eq. (9) reduces to
X(B)(Z):lz/ X|e2i|kz' (4) NZ_(2n+N)2
< NI (ck)2e@ N 4 (g M4 ¢ N
w
Heree_;=¢" and y_,= x| . Further,k==/d is the Bragg
wave number, and subscript [ Z] denotes summation over (2m+N) _
all integerq Z]. Let us introduce a small but finite parameter +m¢n2,0,_N €n-mé =O(en). (10

7 representing the grating’s depth,
Since relation(10) suggests thag ?"*N~Q(#) for n#0,
O(n)~e = a x 5) —N, the final term on the left-hand side @&(7?). We ne-
e € Xo glect it as we search for the lowest order correction due to
the grating depth. The derivatives with respectztand t

for at least ond #0. Sincee(z) and y(®)(z) are given by  were dropped since they are also smaller tagg 7). Thus
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Eq. (10) yields an explicit form for the envelopes of the slave second and third lines. Now these equations become

waves in term of the dominant waves™V,

aminy_ SnE M Fen N
S T R VA

N —

(n#0,—N),

(11)

wheree, were defined in Eq(5). Substituting these into Eq.

(9), we obtain a set of closed coupled equationd6t™) for
n=0,—N up to O(75?, ne,&?):

140 0 Nk Nk iey 0€CN
o I () IR G \) SN (N) WL |
I(vg&t+¢925 +2KS +2a5 +Ug pn
1 [ 1 42
I A (N
2Nkl 922 v2 (?tz)g 0 12
149 9 Nk Nk
o A T E X) BT () BT 8 V)
I(Ug pn [72)5 + 5 K EW+ 5 a&
ie_nydEMN 1 [ 92 1 &
+—X + — - — e V=0,
vg ot 2Nk 572 v’ ot?
(13

where v =ce,

wave number, and the dimensionless parametets and 8
are defined by

k=enyTt S, (14
j“=No [2]+N 2_ ’
N
. €_i€+N
B‘H_N,O(ZHN 7 (10
N

Recall that we dropped terms lik®( 7% and O(7?%) in
deriving Eqgs.(12) and(13). Now note the relation

(a 1 a)( g 1 a)

=l —F= || —+= —|g(&N)

dz vg dt/\dz vqy ot
Jd 1 4 Nk

= — = | (+ _ (+N) 2 2
(F72+Ug ﬁt)(_l) K& +0O( 7%, ne,e%)
NK|?2 .

2(7 |k|2£EN+0(e 92, ne?,e%), 17

where k. = k* =k, and we used Eq€12) and(13) in the

>0 is the group velocity at the Bragg

19 9 Nk Nk
i( +—>5(N)+7K(€(N)+—

1
a+ Z|K|2)5(N)

v_gﬁ 0z 2
i 9ECN
+v—geN pn =0, (19
i(vig%—%)e(‘erN?kK*S(NMN?k a+%|x|2)5(_N)
[ 9N
+v—ge_N ——=0. (19

The first two terms in Eqs(18) and (19) correspond to the
conventional linear coupled mode equation, witlgiven by

Eqg. (14), in which the second term is a correction to the
shallow grating expression. The third and fourth terms are
new, and are lowest order corrections due to the grating
depth. The effect of theharpnes®f the grating is included
througha andB. Equationg18) and(19) correspond to Eqs.
(39 of Sipeetal. [18], in which the explicit time depen-
dence of the envelopes was dropped. In fact, if we take
=1 and change the notation by

z— ¢, (20
=G| 1+ 7° 2 |Gm 2), (22)
€
E—n—>2779n+7722 On-mdm (N#0), (22
0 meZ
7
oo 13 | ot s0. (29
meZ
EED L (U= pg,p@)€ s (24)
ECD L (O— pg_u@)el Aot (25)

we confirm Eq.(39) of Sipeet al. [18] up to O(7?) in the
uniform grating limit. The transformation fog, originates
from e(z) = (n(z))?, wheren(z) is the refractive index. The
frequency difference)’A » owes to the definition od; here
w=ck/ey, whereas in Ref[18] w=ck/n,.

Setting £=N(z,t) = £ . exp{iNk2 {(Kz—v40t)} and sub-
stituting into Eqs.(18) and(19), we find

|«[?

O—K+ C(+T K+eNQ

l? -E=0,

K
at+t——

O+K+ 7

K* + e_NQ

(26)

where & is the vector with element§. . This leads to a
dispersion relation between the dimensionless wave number
K and dimensionless frequen€y:
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|k|2\? ) ) with the nonlinear analysis for narrow and finite gaps only. A
Q+at > K — |k +en]*=0. (27)  simple example of near degeneration of a gap is also dis-
cussed. In the wide gap case the modulation parameter

In the conventional shallow grating case the correspondinghould be set at~», and the third and fourth terms in Egs.
relation is given byQ2—K2=|ey|% indeed, this result is (18 and(19) are to be regarded as the lowest order correc-
obtained wher®(7°) quantities and smaller are omitted. Up tions. Nonlinear effects for such situation are discussed
to O(7*) Eq. (27) can be written briefly in Sec. V.

1
(1 en?)(Q+AQ)?—K2= | ]2+ §|K|4+Q|K|2' IIl. NONLINEAR COUPLED MODE EQUATION

(29) We now include the nonlinear Kerr effect, taking tRéh
gap to be narrow or finite. Again, we substitute expan$n
into wave equation(2) and extract the coefficients of

+RekB*), (29  exdi(2n+N)kz—iNwt]. If n#0,—N,N,—2N, we again ob-
tain Eq. (11) for the slave waves. Fon=N,—2N up to
O(7,e) we have

3
AQ=(1+|eN|2)(a—Z|K|2

where Re indicates the real part. KK=0, the valuesQ)

=(). give the upper {) and lower (~) edges of the gap.
From Eq.(28), neglectingO( %% quantities, for the edges of 5(3N):£
the Nth gap we find 8

e2N8<‘N>+3?(5“))2(6(‘“))*), (33
0

Q.=—AQ*|x|. (30 1 Y
5<—3N>:—<e_2N5<N>+3—°(5<—N>)2(5<N>)*), (34)
Thus the center of the gap shifts byNwA /2 due to the 8 €o
depth of the grating; the width of the gap ik Hereafter . o . , )
we refer to parametex defined in Eq.(14) as thegap pa- respectively, which mclgde explicit nonlinear terms. We in-
rameter as it plays a key role in our analysis. trod_uce a frequency shift to the host waves by the transfor-
Care should be taken with theharpnessparameterse ~ Mation
and B, since they are given by infinite serigsee Eqs(15) . )
and(16)]. If () is smooth enougkhe; are close to zero for E.=£CVexplivgNkat/2), (35
largej, anda and B are then expected to be small, of order ) ) )
7% Even for nonanalytic functions such as a piecewise concorresponding to thezgap center shifNwA()/2 of the lin-
stant functiong, is at most approximated gs* for largej. ~ €ar system up t®©(7°) [see Eq.29)]. Forn=0,-N, we
Thus @ and 8 converge for a large class of gratings, anddiscuss the narrow gap and finite gap cases below.
remain at abou©(7?).
We now consider the gap parameterwhose order igy, A. Narrow gap case
as seen from definitiofl4). Now for some gratings the up-
per and lower edges may be degenerate. However, even éfq
the gap does not completely vanish, its width may become

For a narrow gap £~ x~ 7°), we find closed coupled
uations for the modified host wavEs :

small compared to the grating deptr] <O(7). As seen in 19 o _

Eq. (14), such a case occurs whey, is sufficiently small P S(|E4|*+2|E_|)E,=0
compared top. Since in the fully deep case the gap width is g (36)
0O(1), and in theshallow case it i©O(#) from Eq. (5), here,

for convenience, we express its order ¥ First, assume 19 9

en~O0(7?) or less. Then the gap widtk is also of order i(——— —)E+?* E,+8(|E_|?+2|E,|)E_=0,
O(7?). Hereafter, we refer to such a case asrhaow gap vgdt 9z

case In contrast to thdinite gap casgey, is aboutO(7°?), (37)
and, accordingly, the band width is of the same order. Fi-

nally, in thewide gap casgey~O(7), and the grating depth  Where

is fully reflected in the gap width.

As seen from Eqs(18) and(19), we must set the modu- - N_k _ M‘ - 2
lation parameter to be O(k), in order for a balance be- "2 2 (en+B)~0(r), (38)
tween the modulation terms and the Bragg grating resonance
term. Then for narrow and finite gap cases, we assume 3NK xo
8=——"—~0(7". (39
e~n® (narrow gap cage (31 2 &
e~7%2 (finite gap case (32) Here,O(#°%) terms have been omitted. These coupled mode

equations have the same forms as those for shallow gratings.

In formulating these criteria, the second lines in EGL) However, the depth effects &(#?) are included ink, and
and (13) are neglected, though corrections related to then the frequency shift35) via the parameterg and «, re-
sharpness in the third term remain. In Sec. lll, we proceed spectively.



PRE 61 CORRECTIONS TO COUPLED MODE THEORY FOR DEE .. 4495

B. Finite gap case x(%)e(z d

For a finite gap £~ x~ 7°?), we have E; g; : ;
(19 9 — 5 5 baaj\-l LJLI LIU__JJ“'
'(ﬁa_ﬁﬁ E.+«xE_+68(|E,|*+2|E_|)E, o L B z

(0<p<1/2) 0
+u(|E_|?+2|EL|P)E_+u*E2E* + vE2 E* =0,
FIG. 1. Grating type used to illustrate the gap degeneracy. Each
(40) period consists of three kinds of materials. A particular choicp of
leads to a narrow width for thdth gap.

E_+«*E,+8(|E_|2+2|E,|)E_

{19 9
i
vgdt oz

obtained via different approaches suggests that the general-

ized coupled modéGCM) equations(40) and (41) can be

+u*(|EL P+ 2[E-[HE, +pE2EL + ¥ ESEE =0, considered the appropriate model for deep gratings with
(41  small but finite gap.

We expect the near degeneration of a ggp<»n for a

where large class of periodic functiongz), even thougle,y, xn .
3NK and y,n remain atO(#). Here, using a simple grating
u=— )ﬂwo( 7°?), (42) model, we demonstrate gap degeneracyNerl, and calcu-
2 € latee,, x1, andy,, which give the correction terms andv.

We consider piecewise constant functias(z) and x)(z)

- 3Nk X2N ﬁe ~0(752) (43) with three distinct media in each period, as shown in Fig. 1.
2 e 2¢ N ’ The Fourier expansion of(z) is

where againO(%°) were dropped, andy;=(x;/xo)Xo 1 1 A
~0(7)-0(g)~0(5°? [see relationg3) and (5)]. We ne- €(z)=pat5a+|5;—plagt > €.e? T (46)
glect nonlinear terms with derivatives because they are n#0
higher order quantitiegO( ) at mosi. Coupled equations
(40) and (41) are our main results and are generalization of _amag _ @ ag . ”_77)
the conventional results for shallow gratings. They are for- “ Thr sin(np) nim sin 2 ) 47

mally consistent with previous results of de Steétel.[14]
[see Eq.(102 in this referencg The first lines in Eqs(40)  The Fourier expansion foyt®)(z) is identical, but with they,
and (41) correspond to the conventional nonlinear coupledreplaced byb; . If p (with 0<p<1/2) satisfies
mode equation; the remainder ©f 7°?) are the lowest cor-
rections arising form resonances with the linear and nonlin-
ear grating.

Our results can be directly compared to those of de Sterke
et al.[14] in the limit in which the linear grating is shallow, han e, is obviouslyO(#7%?) or less sinced, —as)~O(7),

but the nonlinear coefficients are modulated strongly. In thig, 1yich corresponds to the narrow or finite gap cases. None-
limit the Bloch functions¢,(z) and ¢,(z), at the upperu) thelesse,, x4, and x, generally remain a®(7):
and lower(l) gap edges, are

=0(7"?), (48)

sin(p) —

a—as
a;—ag

$u(2)=sin(2kg2) + O(7), (44) e,= ""21‘ Bsin2p), (49)
TE€Q
¢1(2) =0 2kg2) + O( 7). (45)
1 a,—a
Taking the nonlinear overlaps from E@9) of Ref.[14] we X1=—— (bl—bg,)az_a3 —(by,—bg) ¢, (50)
find that 8, u, and v are proportional toyy, x1, and — x», X0 Loes
consistent with result106) from Ref.[14].
The difference between our analysis and that in Ref], _ b+ — b2)sin2 51
however, is that in the latter the nonlinear coefficidntsare X2 277)(0( 1~ b3)sin2mp), 6D

all deemed to be of the same order, whereas in our analysis

w and v are regarded as lowest perturbation terms. Notavhile x and v are O(%°?). We note that for gratings con-
further that the constanys and v can be complex, whereas sisting of two media, ifey is small thenyy is also small.

I'y andT',, the corresponding parameters in the work of deThen w in the GCM equations can be neglected, though
Sterkeet al [14], are real. However]'; andI', are real must be kept in general. The above example is an extreme
because the Bloch functions from which they are calculateénd ideal model. Nonetheless, in real material, we expect
were chosen to be real. If this is not done, then they wouldhat even ifey happens to be smaller thap other Fourier
come out to be complex as here. Complex nonlinear coefficomponent®,y, xn, andysy are not always small and thus
cients were earlier found by Broderick and de Sterke in theemain atO( 7).

study of nonlinear effects in superstructure gratifigy. We It is well known that the GCM equations form a Hamil-
finally note that the fact that formally the same equations ar¢onian systeni14,19. The Hamiltonian is given by
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He f+wd [ - JE . JE_ [9]. The real constang is the argument of the parametE,r
“Uo) 9551 E Ty -z i.e., k=|k|€'9. Substituting ansat£58) into (40) and (41),
. . we obtain equations for the real and imaginary parts, four in
— [E,|*+[E-| 2 total. The consistency between the equations for the imagi-
+KkE*E_+ 68 ————+|ELE_|
4 nary parts leads to
2 2\E* v * 2 ve—V
+u(|EL|*+|E_|)EXE_+ 5 (E%E_)*+c.c., A= 9 (59)
2 vgtV'

52
52 Therefore, we must tak&/| <|v | for the speed/, consistent
where the canonical equations are with the Aceves-Wabnitz solution of the standard coupled
mode equation§9]. This leads to

JE. SH 9EX  SH
teEr ot SE. ®3 $(O=0.—0_, (60)
i dF _
The GCM have the conservation laws d—é,:27|K|Sin(¢)|:+472|,u|5in(¢—h)F2
J 2 2 J 2 2 .
0:5(|E+| +|E_| HEU@’('E*' —|E_|?), (54 +29|v|sin 2(¢—c)F?, (62)
; g1 JE* _ JE* wherey is the Lorentz factor defined by
Al TR 1
* * V= (62)
d 1 JE% JE* V1=(Vivg)
+—vgl = By — —E_—
az 9| Jz Jz ,
andh=arg(u) —g andc=arg(v)/2—g. The relevant linear
+ 8(|EL|*+|E_|*+4|ELE_|?) combination of the real parts of E(0) and (41) gives
+ u(|EL |2+ [E_[DESE_+ (EXE_)? dé _, > — 2
M B - +E-T o BB — =2v°Q+ 2y|k|cog ) +2(1+2v%) ySF

df

*

v 2 _ _
+M*(|E+|2+|E—|2)E+E’i+7(E+E’i)2}. (55) +877|u|cog ¢—h)F +2y|v[cos A ¢—c)F.

(63)
In addition to the “energy” associated with Hamiltonian The ordinary differential equation®1) and (63) have two

(59), the CGM equations have the two conserved quam't'esdegrees of freedom which determine the amplitBdend the

phase differencep=6,—6_. Another combination gives

+ o0
N=f dz(|E.|?+|E_|?), (56)  an equation fom, +6_,
d(o,+6_ \%
+o ] JE® JE* ¥=2y2—{ﬂ+[275+ 2| u|cog ¢ —h)TF}.
sz dz={|E, —+E_—|1, (57) d¢ Vg
e 9z 9z (64)
corresponding to the total “photon number” and “momen- We return to this equation below. The system of equations
tum” of the two waves, respectively. (61) and (63) has an integral (F, ¢),
IV. EXACT GAP SOLITON SOLUTIONS TO THE |=29°QF +2y|«[F cog ¢) + 8(1+29°) yF?

GENERALIZED COUPLED MODE EQUATION
+47% u|F2cog ¢p—h)+ y|v|F2cos A p—c), (65)
Traveling solitary wave solutions of the GCM equations
were obtained in Ref14] by means of numerical integration which has the properties
of the Stokes parameters. Here we choose another approach

to obtain exact solution in the form of traveling waves. Let de¢ 4l dF al
us look for solutions of the form WG Al ag (66)
E. :A11/2[F(g)]l/zei[ai(g)—vgmiglz], (58)

Integral (65) leads to orbits in thé=—¢ plane (the phase
where{=2z—Vt. FunctionF({) and constanA are positive. space._TypicaI phase flows are shown for the “in-gap case”
Phased. (¢), frequencyQ), and velocityV are taken to be [20] (|«[>v|€[) in Fig. 2 for

real. Below we see thdd andV characterize the solutions, _
just as in the Aceves-Wabnitz solutions for shallow gratings c=h=0, [«k[=468, 1+2y°=4,

(67)
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FIG. 2. Phase flows for the in-gap case. The circle dotf at

=0 are fixed points, whereas orbits Wﬂh5|/(|;| y)=0 are sepa-
ratrices. Orbits withF<<0 are unphysical.

|« P K|
yQ=-— 4y[u|=03«], [v]=05«],

with the normalized integral=1/(|k|y) chosen]=0,+1.
Note that the separatrices fdr=0 correspond to a local-

ized wave. Further, flows in the lower half plafke<O are

not physical, becauge>0 in Eq.(58). The flow diagram for
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[(1+29%) y6+4y?|ulcog ¢—h)+y|v|cos A p—c)]F
+252Q0+2y|k|cog ¢)=0 (69)

which gives the separatrices. Substituting E&p) into Eq.
(63), we eliminateF and obtain an equation fas({) only,

do 5 —
d—§+27 QO+ 2y|k|cog ¢)=0, (70)
which is directly integrated into
{ lkl+yQ .
¢({)=—2 arcta ———tanh"+(&/2)|, (71
|| = yQ
E=2{Nk*=y*Q*¥({— (o)}, (72

where {, is an arbitrary constant. Upper and lower signs

correspond to the two solutions in the flow diagrams. Note

that Eq.(70) for ¢(¢) does not include: or ». Thus solution

(71) is the same as for the conventional coupled mode equa-
tions. Indeed, careful analysis shows that it agrees with the
result of Aceves and Wabni{®8]. In contrast, the amplitude

F differs from the conventional case. It is obtained from Egs.

(69) and(71) as

Fo(0)

the “out-gap case” [«|<y|Q|) is depicted in Fig. 3 for ()= 1+Acog¢p—h)+BcosA¢p—c)’ 73
yQ=—2|«], (68) +2(|x]?— 7?07
Fo(¢)= eV o 7
and other values as in Eq$67). We further choosel 8(1+2y*)(|«|coshé) = vQ2)
=1/(|x[y)=0, —0.555, and*+ 7. Note that the out-gap case where the constanta andB are given by
does not allow for localized solutions, though the upper and
lower separatrices J&=—0.555) correspond to dark and Ayl
bright solitons on a finite background, respectively. Here, we =——-—> ~0(n), (79
consider localized solutions, and we therefore limit ourselves 8(1+2y%)
to the in-gap case.
To find localized solution such th&—0 as{— *+o, we _ || -0 76
setl=0. Then, except for the trivial solution, E(5) gives B 8(1+292) (7). (76)

12 T T T T T T

SinceF should be positive, the upper and lower signs in Eq.
(74) stand fors>0(or y,>0) and §<0(or x(<0), respec-
tively. The denominator of Eq73) is determined using

|| = yQ coshé

=5 , 7
cosPL) | k|coshé+ yQ) (77
NP 292 inh
sing({)=7 Tyt e é, (78)
| k|coshé= yQ

where we used Eq(71). Quantity Fy defined in Eq.(74)
corresponds to the gap soliton amplitude for the standard
coupled mode equation|«|=|v|=0), the solutions of
which were found by Aceves and Wabn|&]. Equation(73)

FIG. 3. Phase flow for the out-gap case. Separatrices occur axplicitly shows the deformation of the gap soliton shape due
J=1/(|x|y)=—0.555. Orbits below the critical poinsircles rep- ~ to the grating depth. An example of a new gap soliton, with
resent dark solitons, whereas orbits above this points correspond fgarameters as in Eq&7), is shown in Fig. 4. Note that the
bright solitons on a finite background. solution has a double peak. Such phenomena were discussed
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single humped soliton

FIG. 5. Parameter regions for the existence of single and double

FIG. 4. Double hump traveling gap soliton with parameters as inyymped gap solitons, for a GaAs-polymer grating Witg,a/d

Egs.(67).

before[14], though not fully analytically. The soliton veloc-
ity V and frequency) are found from Eq(62) and(67) to be

V=04/y3, Q=—|«|/6.

It is interesting to derive the condition for a double
humped soliton solution to the GCM equatigd$) and(41)
to exist. Considering the phase flow diagrantin ¢ space,
we find that the condition is

(79

d?F at ¢=m for 6>0
—— (80
de? at ¢=0 for 6<0.
Using Eq.(69), we have
14252 — 4yQRd ul 8]+ (= 4Q —3)Rg v/ 5]<0,
(81)
where R¢] indicates the real part and
0=01|«], (82)

is the normalized detuning parameter. Note fl§at<1 for
the “in-gap” case. Thet signs indicate positive and nega-

=0.1, 0.15, 0.25, 0.3, 0.4, and 0.5. Paraméleis the normalized
detuning from Eq{(82), andV is the soliton velocity. The soliton
are double humped below the curves.

inequality(81), as required. It is obvious that if/ § andv/§

are very small, the soliton is always single peaked. However,
for deep gratingsy and v can be as large a8 and double
humped soliton solution can then be found. As an example,
we consider the GaAs-polymer structure discussed in Ref.
[14]. From Fig. 7 in that paper, we see that if the GaAs
volume fraction is given, we know thdt,, I';, andI", cor-
respond tas, u, andv, respectively. Then conditiof81) can

be evaluated explicitly. This result is shown {d—V/v,
space in Fig. 5, for six values of the GaAs volume fraction
dgaasd/d. The curves give the boundaries below which the
solitons are double humped. Since the results depenf|on
only the results folVv>0 are shown. Figure 5 shows that
double humped solitons exist only for negative detunings,
corresponding to high intensities. In the lindgas/d—0,

the boundary curve coincides with tfeaxis, and no double
humped solitons can then be found. This is not surprising
since in this limit the grating is shallow.

Now we have obtained both the amplituB¢/) and the
phase differenceb({), we can obtain total phasg, + 6_ by
direct integration of Eq(64). In fact, using Eq.(69) and

tive &, respectively. The soliton parameters in Fig. 4 satisfy(70), it can be explicitly written as

[2y5+2|pu|cogp—h)]de

oz [

\Y
6. +60_=2y>—
Ug

wheres=(1+2?)yé.

V. CONCLUDING REMARKS

s[1+Acog¢—h)+BcosA$—c)]/’

(83

by Sipeet al. [18]. Depending on the gap parameterwe

. . . analyze both the narrow gap case and the finite gap case in
Corrections to conventional coupled mode theory W4 he nonlinear stage. The coupled equations in the former case

optical system due to the depth of the grating have beepeqyce to the conventional equations, though the values of

discussed. In the linear case, this results in a deformation ahe coefficients differ a®(7?). These corrections are related

the local dispersion relation, leading to changes in the posito the sharpness parametersand 8, which originate from

tion and width of the photonic band gap. Assuming a har-coupling with an infinite number of plane waves.

monic time dependence, our results reduce to those obtained For a finite gap, we derived the GCM equatida§) and
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(41), which include the lowest order corrections due to theanalysis of the solutions to the GCM equations remains to be
grating depth and grating sharpness. We found that the pertgone.

odicity of x(®) also contributes to the correction terms. The If the gap is wide enougrey~ x~ 7, we should set the
GCM equations constitute a Hamiltonian system and have ahodulation and nonlinear parameterequal to ». In this
least three invariants: energlzq. (52)], photon numbefEq.  case we cannot neglect terms likg|E.|2d(E.)/dz and
(56)], and momentunﬁEq. (57)]. The nonlinear part of the Y2|E.|*E.., which are ofO(%?), as they are comparable
GCM equations has the same form as that of fully deep grayjth the correction terms in the GCM equations. The nonlin-

ing theory[14]. ear equation up t@®(7?) thus obtained is very complex,

We also obtained the exact form of a two-parameter set ofyoygh it can be reduced to a Hamiltonian form. We leave
moving soliton solutions to the GCM equations. These soluype analysis of wide gap case for future work.

tions are generalizations of the well known gap solitons, de- |5 the present work, we have neglected polarization ef-
formed due to the grating depth. A typical double peakedgcts as usually done in this field, though it was considered

solution was presented, illustrating a qualitative differenceaypjicitly in a recent shallow grating analysis by Pereira and
with conventional coupled mode theory for shallow gratings.gjne[21]. While, to our knowledge, polarization effects have

Recent analyses of the conventional gap soliton stability,o peen reported, they are most likely to be observable in
[10,11 suggest that for a shallow Bragg grating wih”’  corrugated guided wave structures.

nonlinearity, the solitary wave solutions are stable for In conclusion we have generalized conventional coupled
>0 in gap, while forQ<€.<0 a vibrational instability mode theory for Bragg gratings by including the effects of

occurs. The critical detuninf. depends on the soliton ve- the grating depth. Deriving a generalized coupled mode
locity V. If » and v in the GCM equations are small, equation, we obtain expressions for traveling soliton solu-

~0O(7), the generalized gap solitons are expected t0 bgons. We show how the grating depth affects gap solitons
stable for(0>0. The Stablllty of the humped solitons is still propagation' resumng in Changes to their Shape_

an open question. The double humped solutions occur for
deep gratings, i.e. when, v are comparable t@. As dis-
cussed in Sec. IV, the realistic example of a deep grating
allows double humped solutions only for negative detunings
(see Fig. 5. Therefore, based on the results for shallow grat- Takeshi lizuka thanks Yuri Kivshar for useful discus-
ings mentioned above, it is likely that the double humpedsions. This work was partially supported by a grant-in-aid
solutions are vibrationally unstable. However, the stabilityfrom the Japanese Ministry of Education.
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