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Corrections to coupled mode theory for deep gratings
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We generalize the standard coupled mode equations describing interactions between forward and backward
propagating waves in a nonlinear optical Bragg grating. Including the lowest order corrections of the grating
depth, we obtain a Hamiltonian system that can be regarded as an extension of the usual coupled mode
equations for shallow gratings. The results are consistent with existing results based on a Bloch wave expan-
sion. We also obtain exact traveling solitary wave solutions, that can be regarded as a generalized gap soliton,
modified by the grating’s depth.

PACS number~s!: 42.79.Dj, 42.65.Tg, 42.81.Dp
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I. INTRODUCTION

Wave propagation in nonlinear media with a period
structure is of great current interest in linear and nonlin
physics. A striking aspect of the linear properties of su
media is the drastic change in the linear dispersion, hi
lighted by the appearance of stop gaps. Coupled mode th
is the standard method to describe electromagnetic w
propagation in such structures@1,2#. A most remarkable re-
sult obtained using this method is the existence of gap s
tons when the wave intensity is high enough for nonlin
effects to play a role@3#. This theoretical prediction wa
verified experimentally in an optical fiber geometry@4–6#.
More recently, in an AlxGa12xAs grating filter where the
index modulationsdn can be as great as 0.1, soliton prop
gations was also observed@7#. The general gap soliton solu
tions to the coupled mode equations were first obtained
limiting case by Christodoulides and Joseph@8#. The full
solutions were found by Aceves and Wabnitz@9#, who also
discussed aspects of their stability. Comprehensive anal
of Bragg solitons stability have also recently been repor
@10,11#.

Though the coupled mode equation are the usual gov
ing equations for nonlinear gratings, their derivation from t
Maxwell equations often requires the assumption that
grating is sufficientlyshallow. This allows one to use the
picture of coupling between forward and backward wav
satisfying the Bragg condition. However, if the period
variation of the refractive indexn(z) is comparable to the
mean value, or, in other words, if the grating isdeep, such as
in a AlxGa12xAs grating filter, then the shallow grating ap
proximation is not justified.

One method to analyze deep gratings is by using Bl
wave solutions as the fundamental waves. Actually
modulation of asingle Bloch wave is known to obey the
nonlinear Schro¨dinger equation@12–15# in Kerr optical me-
dia, and its fundamental soliton corresponds to gap solit

*Permanent address.
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in this geometry. To derive more general coupled mo
equations it is necessary that the field can be written appr
mately as a superposition oftwo Bloch waves. Effects due to
other Bloch waves can be treated perturbatively@14#. The
Bloch wave approach can also be used to describe nonli
effects in periodicx (2) media @16,17#. Note that the Bloch
function formalism has the feature that the linear syst
needs to be solved first, and the nonlinearity is then con
ered as a perturbation which can be treated in a variety
approximations.

A different formalism to treat deep gratings was report
by Sipeet al. @18#. In this formalism, which was develope
for linear gratings only, the properties of the linear syste
are determined within the method, and do not need to
calculated separately beforehand. The linear properties
therefore not obtained exactly, but in terms of an asympto
series, only a few terms of which are retained. Nonethele
the method leads naturally to low-order corrections to
coupled mode equations for shallow gratings. The aim of
present work to extend the analysis of Sipeet al. @18# to
include nonlinear effects, particularly the Kerr effect. W
also analyze how gap solitons are affected by the gra
depth. The equations that are obtained are expected to
the forms

i S 1

vg

]

]t
1

]

]zDE11d~ uE1u212uE2u2!E11k̄E21C50,

~1!

i S 1

vg

]

]t
2

]

]zDE21d~ uE2u212uE1u2!E21k̄* E11C50.

As discussed in detail below,E65E6(z,t) are associated
with envelopes of the forward(1) and backward(2) waves
at the Nth Bragg wave numbers, and6vg are the group
velocities in the absence of the grating. Parametersk̄ andd
are constants, representing the gap width and the streng
the nonlinearity, respectively. Without the terms indicated
C, Eqs. ~1! reduce to the conventional coupled mode eq
tions for shallow gratings. Our main purpose here is to
4491 © 2000 The American Physical Society
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clude the effect of the grating depth up toO(hf), wheref is
less than 3 and parameterh represents the grating’s dept
Therefore, we neglectO(h3) quantities, though larger term
should be collected. Note that in the conventional coup
mode theory onlyO(h) are included.

In extracting the new terms, we must note three poin
The first is that the dielectric functione(z) is given by an
infinite Fourier series@see Eq.~3!#. Thus, in addition to the
forward and backward Bragg waves, we must consider
infinite number of plane waves exp@i(2m1N)kz# (m50,61,
62 . . . ) @see Eq.~6!#, wherek is the lowest order Bragg
wave numberk5p/d, and d is the grating’s period. The
second point is thatE (63N), associated with exp@63iNkz#,
excited by the Bragg grating, affects the nonlinear term
though other excited waves do not contribute to the order
consider. The last point is that we should also consider
periodicity of the Kerr coefficientx (3) @Eq. ~4!#. In fact, the
Fourier componentsx61 andx62, lead to additional nonlin-
ear terms.

This paper is organized as follows. In Sec. II we introdu
the perturbation expansion for the field. Neglecting nonlin
effects, we obtain a set of linear coupled mode equatio
and we discuss how the dispersion relation and the phot
band gap are modified by the grating depth. In Sec. III
derive the nonlinear coupled mode equations, and we dis
some properties of these equations. In Sec. IV, analytic
pressions for traveling solitary wave solutions, representin
generalization of gap solitons, are derived. Section V gi
some concluding remarks and discussions.

II. FUNDAMENTAL EQUATION AND LINEAR ANALYSIS

We consider electromagnetic wave propagation in a g
ing in the z direction. We assume that the electric field
polarized in thex direction. The wave equation for the ele
tric field xE(z,t) is

c2
]2E

]z2
5

]2

]t2
@e~z!E1x (3)~z!E3#, ~2!

which is derived directly from Maxwell’s equations. Herec
is the speed of light in vacuum, and the dielectric functione,
and the Kerr nonlinearityx (3)5xxxxx

(3) are periodic functions
of z with periodd, expressed by the Fourier expansions

e~z!5(
l PZ

e le
2i lkz, ~3!

x (3)~z!5(
l PZ

x le
2i lkz, ~4!

Here e2 l5e l* and x2 l5x l* . Further,k5p/d is the Bragg
wave number, and subscriptl P@Z# denotes summation ove
all integers@Z#. Let us introduce a small but finite paramet
h representing the grating’s depth,

O~h!;el[
e l

e0
;

x l

x0
, ~5!

for at least onelÞ0. Sincee(z) and x (3)(z) are given by
d

.

n

,
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e
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ss
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s

t-

infinite Fourier series, we may choose nonanalytic functio
such as piecewise constant ones. In this sense, the grat
sharpnessis included in the analysis. We neglect the ma
rial dispersion which does not essentially change our resu
We expand the electric field as

E5S (
mPZ

E (2m1N)ei (2m1N)kzDe2 iNvt1c.c., ~6!

where E (2m1N) are slowly changing envelopes andN is a
natural number. In particular,E (N) andE (2N) are host waves
which denote the amplitudes of the forward and backw
waves at theNth Bragg wave numberNk, respectively. Their
amplitudes are assumed to be larger than the other e
lopes. The fundamental frequencyv is related to the Bragg
wave numberk by the dispersion relation in the absence
the grating:

~ck!25e0v2. ~7!

Since we consider theNth stop gap of the grating, the fre
quency ofE(z,t) is set toNv. We define a second dimen
sionless small parameter« representing the nonlinearity an
the gentleness of the modulation:

O~«!;x0;
]E (6N)

]z
;

]E (6N)

]t
. ~8!

The relation between« and h depends on the situation w
consider. Here we assumeE (6N) and constantsk,c,v, ande0
to be normalized so as to be ofO(1).

First we consider the linear casex (3)(z)50. Substitution
of Eq. ~6! into the wave equation~2!, and a comparison o
the coefficient of exp@i(2n1N)kz#exp@2iNvt# give

2~2n1N!2~ck!2E (2n1N)1N2v2 (
mPZ

en2mE (2m1N)

12i ~2n1N!c2k
]E (2n1N)

]z
12ivN

3 (
mPZ

en2m

]E (2m1N)

]t
1c2

]2E (2n1N)

]z2

2 (
mPZ

en2m

]2E (2m1N)

]t2
50. ~9!

For nÞ0,2N Eq. ~9! reduces to

N22~2n1N!2

N2v2
~ck!2E (2n1N)1~enE (N)1en1NE (2N)!

1 (
mÞn,0,2N

en2mE (2m1N)5O~«h!. ~10!

Since relation~10! suggests thatE (2n1N);O(h) for nÞ0,
2N, the final term on the left-hand side isO(h2). We ne-
glect it as we search for the lowest order correction due
the grating depth. The derivatives with respect toz and t
were dropped since they are also smaller thanO(«h). Thus
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Eq. ~10! yields an explicit form for the envelopes of the sla
waves in term of the dominant wavesE (6N),

E (2n1N)5
enE (N)1en1NE (2N)

S 2n1N

N D 2

21

;O~h! ~nÞ0,2N!,

~11!

whereel were defined in Eq.~5!. Substituting these into Eq
~9!, we obtain a set of closed coupled equation forE (6N) for
n50,2N up to O(h2,h«,«2):

i S 1

vg

]

]t
1

]

]zD E (N)1
Nk

2
kE (2N)1

Nk

2
aE (N)1

ieN

vg

]E (2N)

]t

1
1

2Nk S ]2

]z2
2

1

vg
2

]2

]t2D E (N)50, ~12!

i S 1

vg

]

]t
2

]

]zD E (2N)1
Nk

2
k* E (N)1

Nk

2
aE (2N)

1
ie2N

vg

]E (N)

]t
1

1

2Nk S ]2

]z2
2

1

vg
2

]2

]t2D E (2N)50,

~13!

where vg[ce0
21/2.0 is the group velocity at the Brag

wave number, and the dimensionless parametersk, a, andb
are defined by

k5eN1b, ~14!

a5 (
j Þ2N,0

uej u2

S 2 j 1N

N D 2

21

, ~15!

b5 (
j Þ2N,0

e2 jej 1N

S 2 j 1N

N D 2

21

. ~16!

Recall that we dropped terms likeO(h3) and O(h2«) in
deriving Eqs.~12! and ~13!. Now note the relation

S ]2

]z2
2

1

vg
2

]2

]t2D E (6N)

5S ]

]z
7

1

vg

]

]t D S ]

]z
6

1

vg

]

]t D E (6N)

5S ]

]z
7

1

vg

]

]t D ~6 i !S Nk

2
k6E (7N)1O~h2,h«,«2! D

5S Nk

2 D 2

uku2E (6N)1O~«h2,h«2,«3!, ~17!

wherek15k2* 5k, and we used Eqs.~12! and ~13! in the
second and third lines. Now these equations become

i S 1

vg

]

]t
1

]

]zD E (N)1
Nk

2
kE (2N)1

Nk

2 S a1
1

4
uku2D E (N)

1
i

vg
eN

]E (2N)

]t
50, ~18!

i S 1

vg

]

]t
2

]

]zD E (2N)1
Nk

2
k* E (N)1

Nk

2 S a1
1

4
uku2D E (2N)

1
i

vg
e2N

]E (N)

]t
50. ~19!

The first two terms in Eqs.~18! and ~19! correspond to the
conventional linear coupled mode equation, withk given by
Eq. ~14!, in which the second term is a correction to th
shallow grating expression. The third and fourth terms
new, and are lowest order corrections due to the gra
depth. The effect of thesharpnessof the grating is included
througha andb. Equations~18! and~19! correspond to Eqs
~39! of Sipe et al. @18#, in which the explicit time depen-
dence of the envelopes was dropped. In fact, if we takeN
51 and change the notation by

z→j, ~20!

e0→n0
2S 11h2 (

mPZ
UgmU2D , ~21!

en

e0
→2hgn1h2 (

mPZ
gn2mgm ~nÞ0!, ~22!

v→vS 12
h2

2 (
mPZ

ugmu2D[v1h2Dv, ~23!

E (11)→~u(0)2hg1v (0)!eih2Dvt, ~24!

E (21)→~v (0)2hg21u(0)!eih2Dvt, ~25!

we confirm Eq.~39! of Sipe et al. @18# up to O(h2) in the
uniform grating limit. The transformation foren originates
from e(z)5„n(z)…2, wheren(z) is the refractive index. The
frequency differenceh2Dv owes to the definition ofv; here
v[ck/Ae0, whereas in Ref.@18# v[ck/n0.

Setting E (6N)(z,t)5E 6exp$iNk221(Kz2vgVt)% and sub-
stituting into Eqs.~18! and ~19!, we find

S V2K1S a1
uku2

4 D k1eNV

k* 1e2NV V1K1S a1
uku2

4 D D •EW50,

~26!

where EW is the vector with elementsE6 . This leads to a
dispersion relation between the dimensionless wave num
K and dimensionless frequencyV:
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S V1a1
uku2

4 D 2

2K22uk1eNVu250. ~27!

In the conventional shallow grating case the correspond
relation is given byV22K25ueNu2; indeed, this result is
obtained whenO(h3) quantities and smaller are omitted. U
to O(h4) Eq. ~27! can be written

~12ueNu2!~V1DV!22K25uku21
1

2
uku41auku2,

~28!

DV5~11ueNu2!S a2
3

4
uku2D1Re~kb* !, ~29!

where Re indicates the real part. IfK50, the valuesV
5V6 give the upper (1) and lower (2) edges of the gap
From Eq.~28!, neglectingO(h3) quantities, for the edges o
the Nth gap we find

V652DV6uku. ~30!

Thus the center of the gap shifts by2NvDV/2 due to the
depth of the grating; the width of the gap is 2uku. Hereafter
we refer to parameterk defined in Eq.~14! as thegap pa-
rameter, as it plays a key role in our analysis.

Care should be taken with thesharpnessparametersa
andb, since they are given by infinite series@see Eqs.~15!
and~16!#. If e(z) is smooth enough,e j are close to zero for
large j, anda andb are then expected to be small, of ord
h2. Even for nonanalytic functions such as a piecewise c
stant function,ej is at most approximated asj 21 for large j.
Thus a and b converge for a large class of gratings, a
remain at aboutO(h2).

We now consider the gap parameterk, whose order ish,
as seen from definition~14!. Now for some gratings the up
per and lower edges may be degenerate. However, ev
the gap does not completely vanish, its width may beco
small compared to the grating depth:uku!O(h). As seen in
Eq. ~14!, such a case occurs wheneN is sufficiently small
compared toh. Since in the fully deep case the gap width
O(1), and in theshallow case it isO(h) from Eq. ~5!, here,
for convenience, we express its order byh1/2. First, assume
eN;O(h2) or less. Then the gap widthk is also of order
O(h2). Hereafter, we refer to such a case as thenarrow gap
case. In contrast to thefinite gap case, eN is aboutO(h3/2),
and, accordingly, the band width is of the same order.
nally, in thewide gap case, eN;O(h), and the grating depth
is fully reflected in the gap width.

As seen from Eqs.~18! and ~19!, we must set the modu
lation parameter« to be O(k), in order for a balance be
tween the modulation terms and the Bragg grating resona
term. Then for narrow and finite gap cases, we assume

«;h2 ~narrow gap case!, ~31!

«;h3/2 ~finite gap case!. ~32!

In formulating these criteria, the second lines in Eqs.~12!
and ~13! are neglected, though corrections related to
sharpnessa in the third term remain. In Sec. III, we procee
g

-

if
e

i-

ce

e

with the nonlinear analysis for narrow and finite gaps only
simple example of near degeneration of a gap is also
cussed. In the wide gap case the modulation param
should be set at«;h, and the third and fourth terms in Eq
~18! and ~19! are to be regarded as the lowest order corr
tions. Nonlinear effects for such situation are discuss
briefly in Sec. V.

III. NONLINEAR COUPLED MODE EQUATION

We now include the nonlinear Kerr effect, taking theNth
gap to be narrow or finite. Again, we substitute expansion~6!
into wave equation~2! and extract the coefficients o
exp@i(2n1N)kz2iNvt#. If nÞ0,2N,N,22N, we again ob-
tain Eq. ~11! for the slave waves. Forn5N,22N up to
O(h,«) we have

E (3N)5
1

8 S e2NE (2N)13
x0

e0
~E (N)!2~E (2N)!* D , ~33!

E (23N)5
1

8 S e22NE (N)13
x0

e0
~E (2N)!2~E (N)!* D , ~34!

respectively, which include explicit nonlinear terms. We i
troduce a frequency shift to the host waves by the trans
mation

E6[E (6N)exp~ ivgNkat/2!, ~35!

corresponding to the gap center shift2NvDV/2 of the lin-
ear system up toO(h2) @see Eq.~29!#. For n50,2N, we
discuss the narrow gap and finite gap cases below.

A. Narrow gap case

For a narrow gap («;k;h2), we find closed coupled
equations for the modified host wavesE6 :

i S 1

vg

]

]t
1

]

]zDE11k̄E21d~ uE1u212uE2u2!E150

~36!

i S 1

vg

]

]t
2

]

]zDE21k̄* E11d~ uE2u212uE1u2!E250,

~37!

where

k̄5
Nk

2
k5

Nk

2
~eN1b!;O~h2!, ~38!

d5
3Nk

2

x0

e0
;O~h2!. ~39!

Here,O(h3) terms have been omitted. These coupled mo
equations have the same forms as those for shallow grati
However, the depth effects atO(h2) are included ink̄, and
in the frequency shift~35! via the parametersb and a, re-
spectively.
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B. Finite gap case

For a finite gap («;k;h3/2), we have

i S 1

vg

]

]t
1

]

]zDE11k̄E21d~ uE1u212uE2u2!E1

1m~ uE2u212uE1u2!E21m* E1
2 E2* 1nE2

2 E1* 50,

~40!

i S 1

vg

]

]t
2

]

]zDE21k̄* E11d~ uE2u212uE1u2!E2

1m* ~ uE1u212uE2u2!E11mE2
2 E1* 1n* E1

2 E2* 50,

~41!

where

m5
3Nk

2

xN

e0
;O~h5/2!, ~42!

n5
3Nk

2 S x2N

e0
1

x0

2e0
e2ND;O~h5/2!, ~43!

where againO(h3) were dropped, andx j5(x j /x0)x0
;O(h)•O(«);O(h5/2) @see relations~3! and ~5!#. We ne-
glect nonlinear terms with derivatives because they
higher order quantities@O(h3) at most#. Coupled equations
~40! and ~41! are our main results and are generalization
the conventional results for shallow gratings. They are f
mally consistent with previous results of de Sterkeet al. @14#
@see Eq.~102! in this reference#. The first lines in Eqs.~40!
and ~41! correspond to the conventional nonlinear coup
mode equation; the remainder ofO(h5/2) are the lowest cor-
rections arising form resonances with the linear and non
ear grating.

Our results can be directly compared to those of de Ste
et al. @14# in the limit in which the linear grating is shallow
but the nonlinear coefficients are modulated strongly. In t
limit the Bloch functionsfu(z) andf l(z), at the upper~u!
and lower~l! gap edges, are

fu~z!5sin~2kBz!1O~h!, ~44!

f l~z!5cos~2kBz!1O~h!. ~45!

Taking the nonlinear overlaps from Eq.~99! of Ref. @14# we
find that d, m, andn are proportional tox0 , x1, and2x2,
consistent with result~106! from Ref. @14#.

The difference between our analysis and that in Ref.@14#,
however, is that in the latter the nonlinear coefficientsG i are
all deemed to be of the same order, whereas in our ana
m and n are regarded as lowest perturbation terms. N
further that the constantsm andn can be complex, wherea
G1 andG2, the corresponding parameters in the work of
Sterkeet al. @14#, are real. However,G1 and G2 are real
because the Bloch functions from which they are calcula
were chosen to be real. If this is not done, then they wo
come out to be complex as here. Complex nonlinear coe
cients were earlier found by Broderick and de Sterke in
study of nonlinear effects in superstructure gratings@19#. We
finally note that the fact that formally the same equations
e

f
-

d

-

e

is

sis
e

e

d
d
fi-
e

e

obtained via different approaches suggests that the gen
ized coupled mode~GCM! equations~40! and ~41! can be
considered the appropriate model for deep gratings w
small but finite gap.

We expect the near degeneration of a gapeN!h for a
large class of periodic functionse(z), even thoughe2N , xN ,
and x2N remain at O(h). Here, using a simple grating
model, we demonstrate gap degeneracy forN51, and calcu-
latee2 , x1, andx2, which give the correction termsm andn.
We consider piecewise constant functionse(z) and x (3)(z)
with three distinct media in each period, as shown in Fig
The Fourier expansion ofe(z) is

e~z!5pa11
1

2
a21S 1

2
2pDa31 (

nÞ0
ene2iknp, ~46!

en5
a12a3

np
sin~npp!2

a22a3

np
sinS np

2 D . ~47!

The Fourier expansion forx (3)(z) is identical, but with theai
replaced bybi . If p ~with 0,p,1/2) satisfies

Usin~pp!2
a22a3

a12a3
U<O~h1/2!, ~48!

thene1 is obviouslyO(h3/2) or less since (a12a3);O(h),
which corresponds to the narrow or finite gap cases. No
thelesse2 , x1, andx2 generally remain atO(h):

e25
a12a3

2pe0
sin~2pp!, ~49!

x15
1

px0
H ~b12b3!

a22a3

a12a3
2~b22b3!J , ~50!

x25
1

2px0
~b12b3!sin~2pp!, ~51!

while m and n are O(h5/2). We note that for gratings con
sisting of two media, ifeN is small thenxN is also small.
Then m in the GCM equations can be neglected, thoughn
must be kept in general. The above example is an extre
and ideal model. Nonetheless, in real material, we exp
that even ifeN happens to be smaller thanh, other Fourier
componentse2N , xN , andx2N are not always small and thu
remain atO(h).

It is well known that the GCM equations form a Hami
tonian system@14,19#. The Hamiltonian is given by

FIG. 1. Grating type used to illustrate the gap degeneracy. E
period consists of three kinds of materials. A particular choice op
leads to a narrow width for theNth gap.



n
tie

n-

ns
n
o
e

,
g

r in
agi-

led

ns

’’

4496 PRE 61TAKESHI IIZUKA AND C. MARTIJN DE STERKE
H5vgE
2`

1`

dz
i

2 S E1*
]E1

]z
2E2*

]E2

]z D
1k̄E1* E21dS uE1u41uE2u4

4
1uE1E2u2D

1m~ uE1u21uE2u2!E1* E21
n

2
~E1* E2!21c.c.,

~52!

where the canonical equations are

]E6

]t
5 i

dH

dE6*
,

]E6*

]t
52 i

dH

dE6
. ~53!

The GCM have the conservation laws

05
]

]t
~ uE1u21uE2u2!1

]

]z
vg~ uE1u22uE2u2!, ~54!

05
]

]t

1

i S E1

]E1*

]z
1E2

]E2*

]z D
1

]

]z
vgH 1

i S E1

]E1*

]z
2E2

]E2*

]z D
1d~ uE1u41uE2u414uE1E2u2!

1m~ uE1u21uE2u2!E1* E21
n

2
~E1* E2!2

1m* ~ uE1u21uE2u2!E1E2* 1
n*

2
~E1E2* !2J . ~55!

In addition to the ‘‘energy’’ associated with Hamiltonia
~52!, the CGM equations have the two conserved quanti

N5E
2`

1`

dz~ uE1u21uE2u2!, ~56!

P5E
2`

1`

dz
1

i H S E1

]E1*

]z
1E2

]E2*

]z D J , ~57!

corresponding to the total ‘‘photon number’’ and ‘‘mome
tum’’ of the two waves, respectively.

IV. EXACT GAP SOLITON SOLUTIONS TO THE
GENERALIZED COUPLED MODE EQUATION

Traveling solitary wave solutions of the GCM equatio
were obtained in Ref.@14# by means of numerical integratio
of the Stokes parameters. Here we choose another appr
to obtain exact solution in the form of traveling waves. L
us look for solutions of the form

E65D71/2@F~z!#1/2ei [u6(z)2vgVt6g/2], ~58!

wherez5z2Vt. FunctionF(z) and constantD are positive.
Phasesu6(z), frequencyV, and velocityV are taken to be
real. Below we see thatV andV characterize the solutions
just as in the Aceves-Wabnitz solutions for shallow gratin
s

ach
t

s

@9#. The real constantg is the argument of the parameterk̄,
i.e., k̄5uk̄ueig. Substituting ansatz~58! into ~40! and ~41!,
we obtain equations for the real and imaginary parts, fou
total. The consistency between the equations for the im
nary parts leads to

D5Avg2V

vg1V
. ~59!

Therefore, we must takeuVu<uvgu for the speedV, consistent
with the Aceves-Wabnitz solution of the standard coup
mode equations@9#. This leads to

f~z![u12u2 , ~60!

dF

dz
52guk̄usin~f!F14g2umusin~f2h!F2

12gunusin 2~f2c!F2, ~61!

whereg is the Lorentz factor defined by

g5
1

A12~V/vg!2
, ~62!

andh5arg(m)2g andc5arg(n)/22g. The relevant linear
combination of the real parts of Eq.~40! and ~41! gives

df

dz
52g2V12guk̄ucos~f!12~112g2!gdF

18g2umucos~f2h!F12gunucos 2~f2c!F.

~63!

The ordinary differential equations~61! and ~63! have two
degrees of freedom which determine the amplitudeF and the
phase differencef5u12u2 . Another combination gives
an equation foru11u2 ,

d~u11u2!

dz
52g2

V

vg
$V1@2gd12umucos~f2h!#F%.

~64!

We return to this equation below. The system of equatio
~61! and ~63! has an integralI (F,f),

I 52g2VF12guk̄uF cos~f!1d~112g2!gF2

14g2umuF2cos~f2h!1gunuF2cos 2~f2c!, ~65!

which has the properties

df

dz
5

]I

]F
,

dF

dz
52

]I

]f
. ~66!

Integral ~65! leads to orbits in theF –f plane ~the phase
space!. Typical phase flows are shown for the ‘‘in-gap case
@20# (uk̄u.guVu) in Fig. 2 for

c5h50, uk̄u54d, 112g254,

~67!
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gV52
uk̄u
2

, 4gumu50.3uk̄u, unu50.5uk̄u,

with the normalized integralJ[I /(uk̄ug) chosenJ50,61.
Note that the separatrices forJ50 correspond to a local

ized wave. Further, flows in the lower half planeF,0 are
not physical, becauseF.0 in Eq.~58!. The flow diagram for
the ‘‘out-gap case’’ (uk̄u,guVu) is depicted in Fig. 3 for

gV522uk̄u, ~68!

and other values as in Eqs.~67!. We further chooseJ
5I /(uk̄ug)50, 20.555, and67. Note that the out-gap cas
does not allow for localized solutions, though the upper a
lower separatrices (J.20.555) correspond to dark an
bright solitons on a finite background, respectively. Here,
consider localized solutions, and we therefore limit oursel
to the in-gap case.

To find localized solution such thatF→0 asz→6`, we
setI 50. Then, except for the trivial solution, Eq.~65! gives

FIG. 2. Phase flows for the in-gap case. The circle dots aF

50 are fixed points, whereas orbits withJ[I /(uk̄ug)50 are sepa-
ratrices. Orbits withF,0 are unphysical.

FIG. 3. Phase flow for the out-gap case. Separatrices occu

J5I /(uk̄ug).20.555. Orbits below the critical points~circles! rep-
resent dark solitons, whereas orbits above this points correspo
bright solitons on a finite background.
d

e
s

@~112g2!gd14g2umucos~f2h!1gunucos 2~f2c!#F

12g2V12guk̄ucos~f!50 ~69!

which gives the separatrices. Substituting Eq.~69! into Eq.
~63!, we eliminateF and obtain an equation forf(z) only,

df

dz
12g2V12guk̄ucos~f!50, ~70!

which is directly integrated into

f~z!522 arctanFAuk̄u1gV

uk̄u2gV
tanh71~j/2!G , ~71!

j[2$Ak̄22g2V2g~z2z0!%, ~72!

where z0 is an arbitrary constant. Upper and lower sig
correspond to the two solutions in the flow diagrams. N
that Eq.~70! for f(z) does not includem or n. Thus solution
~71! is the same as for the conventional coupled mode eq
tions. Indeed, careful analysis shows that it agrees with
result of Aceves and Wabnitz@9#. In contrast, the amplitude
F differs from the conventional case. It is obtained from E
~69! and ~71! as

F~z!5
F0~z!

11A cos~f2h!1B cos 2~f2c!
, ~73!

F0~z!5
62~ uk̄u22g2V2!

d~112g2!~ uk̄ucosh~j!6gV!
, ~74!

where the constantsA andB are given by

A5
4gumu

d~112g2!
;O~h!, ~75!

B5
unu

d~112g2!
;O~h!. ~76!

SinceF should be positive, the upper and lower signs in E
~74! stand ford.0~or x0.0) andd,0~or x0,0), respec-
tively. The denominator of Eq.~73! is determined using

cosf~z!57
uk̄u6gV coshj

uk̄ucoshj6gV
, ~77!

sinf~z!57
Ak̄22g2V2 sinhj

uk̄ucoshj6gV
, ~78!

where we used Eq.~71!. Quantity F0 defined in Eq.~74!
corresponds to the gap soliton amplitude for the stand
coupled mode equation (umu5unu50), the solutions of
which were found by Aceves and Wabnitz@9#. Equation~73!
explicitly shows the deformation of the gap soliton shape d
to the grating depth. An example of a new gap soliton, w
parameters as in Eqs.~67!, is shown in Fig. 4. Note that the
solution has a double peak. Such phenomena were discu

at

to
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before@14#, though not fully analytically. The soliton veloc
ity V and frequencyV are found from Eq.~62! and~67! to be

V5vg /A3, V52uk̄u/A6. ~79!

It is interesting to derive the condition for a doub
humped soliton solution to the GCM equations~40! and~41!
to exist. Considering the phase flow diagram inF2f space,
we find that the condition is

d2F

df2
.0 H at f5p for d.0

at f50 for d,0.
~80!

Using Eq.~69!, we have

112g224gV̄Re@m/d#1~64V̄23!Re@n/d#,0,
~81!

where Re@ # indicates the real part and

V̄[gV/uk̄u, ~82!

is the normalized detuning parameter. Note thatuV̄u,1 for
the ‘‘in-gap’’ case. The6 signs indicate positive and nega
tive d, respectively. The soliton parameters in Fig. 4 sati

FIG. 4. Double hump traveling gap soliton with parameters a
Eqs.~67!.
ee
n
os
ar
in
y

inequality~81!, as required. It is obvious that ifm/d andn/d
are very small, the soliton is always single peaked. Howev
for deep gratings,m andn can be as large asd, and double
humped soliton solution can then be found. As an exam
we consider the GaAs-polymer structure discussed in R
@14#. From Fig. 7 in that paper, we see that if the Ga
volume fraction is given, we know thatG0 , G1, andG2 cor-
respond tod, m, andn, respectively. Then condition~81! can
be evaluated explicitly. This result is shown inV̄2V/vg
space in Fig. 5, for six values of the GaAs volume fracti
dGaAs/d. The curves give the boundaries below which t
solitons are double humped. Since the results depend onuVu,
only the results forV.0 are shown. Figure 5 shows tha
double humped solitons exist only for negative detunin
corresponding to high intensities. In the limitdGaAs/d→0,
the boundary curve coincides with theV̄ axis, and no double
humped solitons can then be found. This is not surpris
since in this limit the grating is shallow.

Now we have obtained both the amplitudeF(z) and the
phase differencef(z), we can obtain total phaseu11u2 by
direct integration of Eq.~64!. In fact, using Eq.~69! and
~70!, it can be explicitly written as

n
FIG. 5. Parameter regions for the existence of single and do

humped gap solitons, for a GaAs-polymer grating withdGaAs/d

50.1, 0.15, 0.25, 0.3, 0.4, and 0.5. ParameterV̄ is the normalized
detuning from Eq.~82!, andV is the soliton velocity. The soliton
are double humped below the curves.
u11u252g2
V

vg
S Vz1E @2gd12umucos~f2h!#df

s@11Acos~f2h!1Bcos 2~f2c!# D , ~83!

wheres[(112g2)gd.
e in
ase

s of
d

V. CONCLUDING REMARKS

Corrections to conventional coupled mode theory in ax (3)

optical system due to the depth of the grating have b
discussed. In the linear case, this results in a deformatio
the local dispersion relation, leading to changes in the p
tion and width of the photonic band gap. Assuming a h
monic time dependence, our results reduce to those obta
n
of
i-
-
ed

by Sipeet al. @18#. Depending on the gap parameterk, we
analyze both the narrow gap case and the finite gap cas
the nonlinear stage. The coupled equations in the former c
reduce to the conventional equations, though the value
the coefficients differ atO(h2). These corrections are relate
to the sharpness parametersa and b, which originate from
coupling with an infinite number of plane waves.

For a finite gap, we derived the GCM equations~40! and
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~41!, which include the lowest order corrections due to t
grating depth and grating sharpness. We found that the p
odicity of x (3) also contributes to the correction terms. T
GCM equations constitute a Hamiltonian system and hav
least three invariants: energy@Eq. ~52!#, photon number@Eq.
~56!#, and momentum@Eq. ~57!#. The nonlinear part of the
GCM equations has the same form as that of fully deep g
ing theory@14#.

We also obtained the exact form of a two-parameter se
moving soliton solutions to the GCM equations. These so
tions are generalizations of the well known gap solitons,
formed due to the grating depth. A typical double peak
solution was presented, illustrating a qualitative differen
with conventional coupled mode theory for shallow gratin
Recent analyses of the conventional gap soliton stab
@10,11# suggest that for a shallow Bragg grating withx (3)

nonlinearity, the solitary wave solutions are stable forV
.0 in gap, while forV,Vc,0 a vibrational instability
occurs. The critical detuningVc depends on the soliton ve
locity V. If m and n in the GCM equations are smal
;O(h), the generalized gap solitons are expected to
stable forV.0. The stability of the humped solitons is st
an open question. The double humped solutions occur
deep gratings, i.e. whenm, n are comparable tod. As dis-
cussed in Sec. IV, the realistic example of a deep gra
allows double humped solutions only for negative detunin
~see Fig. 5!. Therefore, based on the results for shallow gr
ings mentioned above, it is likely that the double hump
solutions are vibrationally unstable. However, the stabi
n

o

g

R.

a

e
ri-
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t-

of
-
-

d
e
.
y

e

or
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-
d

analysis of the solutions to the GCM equations remains to
done.

If the gap is wide enough,eN;k;h, we should set the
modulation and nonlinear parameter« equal toh. In this
case we cannot neglect terms likex0uE6u2](E6)/]z and
x0

2uE6u4E6 , which are ofO(h2), as they are comparabl
with the correction terms in the GCM equations. The nonl
ear equation up toO(h2) thus obtained is very complex
though it can be reduced to a Hamiltonian form. We lea
the analysis of wide gap case for future work.

In the present work, we have neglected polarization
fects as usually done in this field, though it was conside
explicitly in a recent shallow grating analysis by Pereira a
Sipe@21#. While, to our knowledge, polarization effects hav
not been reported, they are most likely to be observable
corrugated guided wave structures.

In conclusion we have generalized conventional coup
mode theory for Bragg gratings by including the effects
the grating depth. Deriving a generalized coupled mo
equation, we obtain expressions for traveling soliton so
tions. We show how the grating depth affects gap solito
propagation, resulting in changes to their shape.
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